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Specifications
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Properties

• Complete
– All relevant scenarios must be covered
– Forgetting requirements is expensive

• Realistic
– Functional requirements and non-functional 

requirements should not contradict each other
• e.g.: the response time of a system which solves mixed integer 

programming problems is usually long
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Properties

• Correct
– The requirements must correctly reflect the challenges 

posed by the environment
• Negative example: Y2K-Problem

• Modifyable
– Related requirements should be grouped together, so 

that changes can be made locally

• Ranked according to priority
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Properties

• Verifiable
– Make sure that requirements can be checked objectively

• Include measures
– Transaction/sec
– MTBF
– …

• Subjective: The system should be easy to use
• More objective: An experienced user should be able to use the 

system after two hours training
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Properties

• Traceable
– Each requirement must be uniquely identified

• Unambiguous
– Specifies in a concise language which does not allow 

alternative interpretations (difficult to achieve)

• Valid
– Understood and accepted by all project members, 

managers, customers involved
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Recommendations

• Language
– Choose imperatives carefully. Distinguish

• shall: describes required system functionality
• must, must not: describes a constraint
• should: suggests functionality

– Reduce ambiguity
• avoid options: can, may, optionally
• avoid weak phrases: as a minimum, as appropriate, easy, 

adequate
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Recommendations

• Language
– Use readable, simple language

• short sentences
• generally understood words

– Decompose long requirements into parts
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Recommendations

• Elements of a good requirements statement
– Localization/scenario, e.g. “In online mode”
– Actor/owner, e.g. “the static tolerance band agent”
– Action, e.g. “maintains a log of limit violations”
– Target/owned, e.g. “for the selected signals”
– Constraint, e.g. “provided the appropriate tolerance 

band have been defined by the plant administrator”

• Within a use case, Localization/Scenario, is 
provided by the context
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Recommendations

• Documentation Standard
– Minimize general and administrative sections in your 

documents. The requirements should be the largest part.
– Use templates, but

• customize them to the needs of your projects (omit useless 
sections)

• don’t invent meaningless texts to fill all sections in the 
template
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Recommendations

• Documentation Standard
– Number all requirements

• Make sure (e.g. using tool support), that
– the numbering scheme is applied consistently in all 

documents
– every requirement has a unique number

• Within a use case, denote each step on a separate, numbered 
line

– When using examples, illustrations, tables
• Mark them uniquely
• Explain their purpose (“This is an example for ...”)

and structure (“Column1 describes …”)
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Recommendations

• Choose the right granularity
– Since requirements are to be read by humans, a use case 

with 100 steps might be too long

• Conduct reviews
– Review quality of content
– (Separately) Review conformance with guidelines and 

standards
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Use and Abuse of Use Cases

• Use case advantages
– Capture a user’s need
– Input to the testing process
– Unit of work for incremental development
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Abuse of use cases

• Abuse by decomposition
– Many designers use <<uses>> relationships among use 

cases for functional decomposition

– Problems
• Contradicts the OO style
• Subsubfunctions are duplicated (under different functions)
• Objects are only context-specific encapsulations of data in this 

approach

– Do not try to design the program using use cases
=> leave out detail

function
subfunction

subsubfunction
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Abuse of use cases

• By abstraction
– Use cases are intended for communication.
– There is no need to abstract from the concrete use 

cases, even if the implementation will do so.
– The abstraction might not be natural. Time is lost by 

discussing it.
– If you abstract from “Send receipt to customer” to 

“Transmit or generate document for stakeholder”, you 
will have a large use case, which will be hard to 
understand and implement
=> “Use the concrete use cases to explain and verify 
your powerful abstractions.”
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Abuse of use cases

• By GUI
– Today’s GUI builders allow to describe use cases via 

GUI prototypes
– Problems

• The user thinks, that everything is done, when he sees the GUI 
prototype => false indication of progress

• The user will not accept later changes to the GUI easily
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Abuse of use cases

• By denying choice
– Use cases should really describe goals, i.e. problems the 

user would like to solve.
– Often one tends to commit to early to describing a 

solution; this keeps us from considering alternative 
solutions

– Example
• apply style (in Word) <-> Format paragraph
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