
P. Kolb Page 1

ETH, Outsourcing and Offshoring

Writing Effective Requirements 
Specifications



P. Kolb Page 2

ETH, Outsourcing and Offshoring

Properties

• Complete
– All relevant scenarios must be covered
– Forgetting requirements is expensive

• Realistic
– Functional requirements and non-functional 

requirements should not contradict each other
• e.g.: the response time of a system which solves mixed integer 

programming problems is usually long



P. Kolb Page 3

ETH, Outsourcing and Offshoring

Properties

• Correct
– The requirements must correctly reflect the challenges 

posed by the environment
• Negative example: Y2K-Problem

• Modifyable
– Related requirements should be grouped together, so 

that changes can be made locally

• Ranked according to priority



P. Kolb Page 4

ETH, Outsourcing and Offshoring

Properties

• Verifiable
– Make sure that requirements can be checked objectively

• Include measures
– Transaction/sec
– MTBF
– …

• Subjective: The system should be easy to use
• More objective: An experienced user should be able to use the 

system after two hours training



P. Kolb Page 5

ETH, Outsourcing and Offshoring

Properties

• Traceable
– Each requirement must be uniquely identified

• Unambiguous
– Specifies in a concise language which does not allow 

alternative interpretations (difficult to achieve)

• Valid
– Understood and accepted by all project members, 

managers, customers involved



P. Kolb Page 6

ETH, Outsourcing and Offshoring

Recommendations

• Language
– Choose imperatives carefully. Distinguish

• shall: describes required system functionality
• must, must not: describes a constraint
• should: suggests functionality

– Reduce ambiguity
• avoid options: can, may, optionally
• avoid weak phrases: as a minimum, as appropriate, easy, 

adequate



P. Kolb Page 7

ETH, Outsourcing and Offshoring

Recommendations

• Language
– Use readable, simple language

• short sentences
• generally understood words

– Decompose long requirements into parts



P. Kolb Page 8

ETH, Outsourcing and Offshoring

Recommendations

• Elements of a good requirements statement
– Localization/scenario, e.g. “In online mode”
– Actor/owner, e.g. “the static tolerance band agent”
– Action, e.g. “maintains a log of limit violations”
– Target/owned, e.g. “for the selected signals”
– Constraint, e.g. “provided the appropriate tolerance 

band have been defined by the plant administrator”

• Within a use case, Localization/Scenario, is 
provided by the context



P. Kolb Page 9

ETH, Outsourcing and Offshoring

Recommendations

• Documentation Standard
– Minimize general and administrative sections in your 

documents. The requirements should be the largest part.
– Use templates, but

• customize them to the needs of your projects (omit useless 
sections)

• don’t invent meaningless texts to fill all sections in the 
template



P. Kolb Page 10

ETH, Outsourcing and Offshoring

Recommendations

• Documentation Standard
– Number all requirements

• Make sure (e.g. using tool support), that
– the numbering scheme is applied consistently in all 

documents
– every requirement has a unique number

• Within a use case, denote each step on a separate, numbered 
line

– When using examples, illustrations, tables
• Mark them uniquely
• Explain their purpose (“This is an example for ...”)

and structure (“Column1 describes …”)



P. Kolb Page 11

ETH, Outsourcing and Offshoring

Recommendations

• Choose the right granularity
– Since requirements are to be read by humans, a use case 

with 100 steps might be too long

• Conduct reviews
– Review quality of content
– (Separately) Review conformance with guidelines and 

standards



P. Kolb Page 12

ETH, Outsourcing and Offshoring

Use and Abuse of Use Cases

• Use case advantages
– Capture a user’s need
– Input to the testing process
– Unit of work for incremental development



P. Kolb Page 13

ETH, Outsourcing and Offshoring

Abuse of use cases

• Abuse by decomposition
– Many designers use <<uses>> relationships among use 

cases for functional decomposition

– Problems
• Contradicts the OO style
• Subsubfunctions are duplicated (under different functions)
• Objects are only context-specific encapsulations of data in this 

approach

– Do not try to design the program using use cases
=> leave out detail

function
subfunction

subsubfunction



P. Kolb Page 14

ETH, Outsourcing and Offshoring

Abuse of use cases

• By abstraction
– Use cases are intended for communication.
– There is no need to abstract from the concrete use 

cases, even if the implementation will do so.
– The abstraction might not be natural. Time is lost by 

discussing it.
– If you abstract from “Send receipt to customer” to 

“Transmit or generate document for stakeholder”, you 
will have a large use case, which will be hard to 
understand and implement
=> “Use the concrete use cases to explain and verify 
your powerful abstractions.”



P. Kolb Page 15

ETH, Outsourcing and Offshoring

Abuse of use cases

• By GUI
– Today’s GUI builders allow to describe use cases via 

GUI prototypes
– Problems

• The user thinks, that everything is done, when he sees the GUI 
prototype => false indication of progress

• The user will not accept later changes to the GUI easily



P. Kolb Page 16

ETH, Outsourcing and Offshoring

Abuse of use cases

• By denying choice
– Use cases should really describe goals, i.e. problems the 

user would like to solve.
– Often one tends to commit to early to describing a 

solution; this keeps us from considering alternative 
solutions

– Example
• apply style (in Word) <-> Format paragraph


	Writing Effective Requirements Specifications
	Properties
	Properties
	Properties
	Properties
	Recommendations
	Recommendations
	Recommendations
	Recommendations
	Recommendations
	Recommendations
	Use and Abuse of Use Cases
	Abuse of use cases
	Abuse of use cases
	Abuse of use cases
	Abuse of use cases

